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Abstract A new method to study a stopped hull of SLEκ (ρ) is presented. In this approach,
the law of the conformal map associated to the hull is invariant under a SLE induced flow.
The full trace of a chordal SLEκ can be studied using this approach. Some example calcula-
tions are presented.
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1 Introduction

Schramm–Loewner evolution (SLE) was introduced by Oded Schramm [8]. SLEs are ran-
dom curves in the plane. There are many variants of SLE, but the local properties of the
random curve are determined by a single parameter κ ≥ 0. SLEs are characterized by con-
formal invariance and the domain Markov property. The scaling limits of two-dimensional
statistical physics models at criticality are believed to be conformally invariant. For this rea-
son the scaling limit of a curve emerging from such a model has to be SLEκ for some κ ≥ 0.
The parameter κ describes the universality class of the model.

A chordal SLE is a random curve in a simply connected domain connecting two bound-
ary points. In Sect. 2, we will define the chordal SLE in more detail. The chordal SLE is
stationary in the sense that given the process up to a time t the law of Kt+s is such that
gt (Kt+s \ Kt) − Xt and Ks have the same law, where (gt )t≥0 is the collection of conformal
mappings satisfying the Loewner equation, (Kt )t≥0 denotes the corresponding collection of
subsets of the upper half-plane H, and (Xt )t≥0 is the driving process.
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SLEκ (ρ)-processes, κ ≥ 0 and ρ ∈ R, are generalizations of the chordal SLEκ . When
ρ = 0 this reduces to the chordal case: SLEκ (0) is the chordal SLEκ . The definition of
SLEκ (ρ) requires two marked points. If Xt is the driving process of a SLEκ (ρ) and the other
marked point is Yt , then for a range of the parameter values the hitting time τ = inf{t ≥ 0 :
|Ys −Xs | → 0 as s ↗ t} is almost surely finite. The stopped hull Kτ is a interesting object in
many ways. For example, SLEκ (κ − 6) is a coordinate transformation of the chordal SLEκ

and hence Kτ describes the full SLEκ trace seen from a fixed point in the real axis.
The novel result of this paper is a formulation of the stationarity of SLEκ (ρ) in Theo-

rem 1 so that Kτ is invariant under the flow which the SLEκ (ρ) induces. In this approach,
the SLEκ (ρ) is run for a time t > 0, then this beginning is erased, and scaling and translation
are used to map the beginning and end points Xt and Yt back to the initial values X0 and Y0.
By the property stated in Theorem 1, (gt (Kτ \ Kt) − βt )/αt has the same law as Kτ , where
αt and βt are the appropriate scaling and translation factors.

Theorem 1 enables us to calculate quantities related to Kτ such as the moments
E[∏n

j=1 akj
] of the coefficient of the expansion G(z) = gτ (z) = z + ∑

j aj z
−j . The driving

function and the coefficients of the Loewner map can be viewed as the “state of SLE” and
they form the SLE data. The stationarity gives a new way to calculate the distribution func-
tions or the expected values of the SLE data. This is related to the approach in [4], although
the work of this paper was done before that paper.

In Sects. 3.4 and 3.5, an approach for the reversibility of the chordal SLE is proposed,
and for ρ = κ − 6, the general form of E[∏n

j=1 akj
] as a function of κ is derived using the

reversibility. The reversibility was recently proven to hold for chordal SLEκ , κ ∈ [0,4] by
Dapeng Zhan [12]. It is a property of SLE that states that if the roles of the beginning and
end points are changed, then the law of the random curve remains the same.

In Sect. 3.6, moments of the form E[an
1 ] and E[an

1 am
2 ] are calculated. In Sect. 3.7,

the method is used to derive the distribution of a1.

2 SLE and Schramm’s Principle

2.1 Chordal SLE

One natural choice for a simply connected domain in the complex plane having two marked
boundary points is the upper half-plane H = {z ∈ C : Im(z) > 0}. The marked points are 0
and ∞. The triplet (H,0,∞) is preserved by the family of mappings z �→ λz,λ > 0. The
Schwarz lemma shows that these are the only conformal mappings with this property.

A subset K ⊂ H is a hull if K = H ∩ K , K is bounded and H \ K is simply connected.
If γ : [0, T ] → C is a simple curve such that γ (0) ∈ R and γ (0, T ] ⊂ H, then Kt = γ (0, t]
is a hull for each t ∈ [0, T ]. In this case the family (Kt )t∈[0,T ] is growing in the sense that
Kt � Ks when 0 ≤ t < s ≤ T .

Let (Kt )t≥0 be a growing family of hulls and gt be the conformal mapping from H \ Kt

onto H that is normalized by gt (z) = z + o(1) as z → ∞. This normalization makes gt

unique. If K0 = ∅ and (Kt )t≥0 grows continuously in a quite natural sense, we can repara-
meterize Kt so that gt (z) = z + 2t/z + · · · at infinity.

If (Kt )t≥0 grows locally in the sense of Theorem 2.6 of [6] then the family of mappings
(gt )t≥0 satisfies the upper half-plane Loewner equation

∂tgt (z) = 2

gt (z) − Xt

(1)
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where Xt ∈ R is called the driving function (process) of Kt . In fact Xt is the image of the
point where Kt is growing under the mapping gt , that is Xt = ⋂

s>t gt (Ks \ Kt). Note that
the family of hulls given by a simple curve is growing locally.

Consider now a collection of probability measures (μΩ,a,b) such that μΩ,a,b is the law
of a random curve in Ω connecting two boundary points a and b of a simply connected
domain Ω . Choose some consistent parameterization for such curves so that they are para-
metrized by t ∈ [0,∞). Now we use Schramm’s principle (which appeared in the seminal
paper [8] by Schramm, see e.g. the discussion about LERW in the introduction of that paper.
It is formulated in the following way in [10].) and we demand that (μΩ,a,b) satisfies the
following two requirements:

(CI) Conformal invariance: For any triplet (Ω,a, b) and any conformal mapping φ : Ω →
C, it holds that φμΩ,a,b = μφ(Ω),φ(a),φ(b).

(DMP) Domain Markov property: Suppose we are given γ [0, t], t > 0. The conditional
law of γ (t + s) given γ [0, t] is the same as the law of γ (s) in the slit domain
(Ω \ γ [0, t], γ (t), b). That is

μΩ,a,b( · |γ [0, t]) = μΩ\γ [0,t],γ (t),b.

First of all CI tells that μΩ,a,b = φμH,0,∞, where φ is a conformal mapping from the triplet
(H,0,∞) to the triplet (Ω,a, b). Note that φ is not unique: any φ(λ · ), λ > 0 would also
do. So for each (Ω,a, b) choose some Φ = φ.

Now we can restrict to the standard triplet (H,0,∞). Let Ht be the unbounded compo-
nent of H \ γ [0, t], Kt the complement of Ht in H and gt the mapping associated with Kt .
The combination of CI and DMP shows that the curve γ̃ : s �→ gt

(
γ (t + s)

) − Xt is in-
dependent of γ [0, t] and is identically distributed to γ . This leads to the fact that Xt has
independent and stationary increments. Since Kt , defined by a curve, is growing locally, it
has a continuous driving process. All the continuous processes with independent and sta-
tionary increments are of the form

Xt = √
κBt + θt,

with some constants κ ≥ 0 and θ ∈ R. Here Bt is a standard one-dimensional Brownian
motion. Let φλ : z �→ λz. CI with φ = φλ implies that Xt and λXt/λ2 have the same law.
This shows that θ = 0 and furthermore that the law of the random curve in (Ω,a, b) doesn’t
depend on the choice of Φ .

Chordal SLEκ is the law of Kt with the driving process Xt = √
κBt . It turns out that Kt

is generated by a curve in the sense that there is a curve γ so that H \ Kt is the unbounded
component of H \ γ [0, t], see [7]. Such γ is called the trace. For κ ∈ (0,4] it is a simple
curve.

2.2 Strip SLE and the Upper-Half Plane SLEκ (ρ)

It is possible to repeat Schramm’s principle for three marked boundary points. A natural
domain for three marked points is the infinite strip Sπ = {z ∈ C : 0 < Im(z) < π}. The
marked points are now 0,−∞ and +∞.

We can continue in the same way as in the case of the upper half-plane. For a family
of hulls (Kt )t≥0 on the strip Sπ , let g

Sπ
t be a conformal mapping from Sπ \ Kt onto Sπ

normalized by g
Sπ
t (z) = z ± const. + o(1) as z → ±∞. We can reparameterize such that
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g
Sπ
t (z) = z ± t + o(1) as z → ±∞. The strip Loewner equation is

∂tg
Sπ
t (z) = coth

(
g

Sπ
t (z) − Xt

2

)

. (2)

We can formulate the conformal invariance and the domain Markov property for three
marked points by adding a third point c which behaves the same way as b. As in the two
point case we can show that the collection of probability measures (μΩ,a,b,c) has properties
CI and DMP if and only if the driving process of the random curve of μSπ ,0,∞,−∞ is of the
form

Xt = √
κBt + θt.

Now we don’t have any conformal mappings other than the identity map preserving
(Sπ ,0,−∞,+∞). So in general, θ doesn’t need to vanish. Hence the strip SLEs are a
family of probability measures parameterized by two real parameters. See also [9].

The infinite strip Sπ can be mapped to the upper half-plane by mappings of the form
φ : z �→ αe±z +β where α,β ∈ R and the sign of α is such that iπ/2 is mapped to the upper
half-plane. Choose α and β so that the marked points are mapped in the following way: 0
to x ∈ R and one of −∞ or +∞ to ∞ and the other to y ∈ R. The strip SLE is mapped
to a random curve of the upper half-plane by defining K̂t = φ(Kt) which is a collection of
hulls of H parametrized by the “strip capacity”. After a time change to the upper half-plane
capacity, the half-plane mappings gt related to these hulls satisfy the half-plane Loewner
equation (1) with the driving process defined through the Itô differential equation

dXt = √
κdBt + ρdt

Xt − Yt

, (3)

where Yt = gt (y). For details of this coordinate change and time change see [9].
The process (Xt − Yt )/

√
κ is, in fact, a Bessel process. The parameter ρ depends on θ

and κ through

ρ = ∓θ + κ − 6

2
, (4)

where the sign depends on which of the points −∞ or +∞ was mapped to ∞, so that the
sign in (4) is opposite to the sign of ±∞ and the one in front of z in the definition of φ, as
indicated by the notation. The law of Kt of the above driving process is called SLEκ (ρ). It
was first introduced in [5] and the heuristic motivation given in that paper is essentially the
same as one given above based on CI and DMP.

This description works until the stopping time

τ = inf{t ≥ 0 : |Ys − Xs | → 0 as s ↗ t}. (5)

For the strip SLE this is the time when the curve disconnects −∞ from +∞ that is the curve
hits iπ + R. After this the strip SLE can’t be continued in any straightforward way. For the
upper half-plane SLE τ is the time when the curve disconnects y from ∞ (for κ > 4) or the
curve hits y (for κ ≤ 4). After time τ the upper half-plane SLE can be continued, at least for
a range of values of the parameters.

SLEκ (ρ) are important since they are the random curves of the upper half-plane that
depend on three marked points and satisfy Schramm’s principle. And especially important
is the case ρ = κ − 6 since that is the coordinate transformation of chordal SLE under a
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Möbius map taking the points 0 and ∞ to two points x and y on the real line. This can be
seen from (4): The SLE on the strip Sπ with parameter values κ and θ is related to the one
with values κ and −θ by mirroring with respect to the imaginary axis. In the upper half-
plane this corresponds to changing from κ and ρ to the parameter values κ and −ρ + κ − 6
by (4). This transformation can be completed by making one more mirroring in the upper
half-plane. The result is a conformal self-mapping of the upper half-plane. For example,
m ◦ exp◦m ◦ log(z) = −1/z, where m(z) = −z is the mirroring map.

Since for κ ∈ (0,8) the chordal SLE avoids almost surely a given point in H \ {0}, it
avoids especially the point that is mapped to ∞. From this it follows that the image of the
full trace γ (0,∞) under the Möbius map is a bounded set. Hence considering SLEκ (κ − 6)

makes it possible to study the properties of the full trace of chordal SLEκ . They really agree
when κ ≤ 4 and the curves are simple. But also for κ > 4, it can be useful to consider the
part until the disconnection time τ , which is also the time until the two curves agree.

It is also possible to see from the equation (4) that if the interface of an Ising type model
with (+,−, free)-boundary condition has a scaling limit that is SLEκ (ρ) then it has to be
θ = 0 and ρ = (κ −6)/2. Namely, the law of the curve has to be invariant under the mirroring
map, since the setup is invariant under the mapping that changes signs of all spins. This
special case is also called dipolar SLE, see [1].

3 Stationarity and some Example Calculations

3.1 Stationarity of SLE

Now we are ready to present the key idea of this paper. We will take a random conformal
mapping and require that its law is invariant under SLE flow. Such a random conformal
mapping is said to have stationary law. Based on this invariance we can derive equations
satisfied by quantities related to SLE.

Let x, y ∈ R, x �= y. Consider SLEκ (ρ) so that X0 = x and Y0 = y, Xt is the driving
process, Yt is as above, and gt is the Loewner map. Let φt (z) = αtz + βt be the transforma-
tion that maps the points x and y to the points Xt and Yt . We require that

{
φt (x) = Xt,

φt (y) = Yt .
(6)

From these equations we solve for the processes αt and βt .
Consider a random conformal map G̃ : H\K̃ → H that is normalized by G̃(z) = z+o(1)

at infinity, and independent from the SLE given by Xt and preserved by the SLE flow in the
following sense: the mapping

Gt = φt ◦ G̃ ◦ φ−1
t ◦ gt (7)

has the same law as G̃. This property is schematically illustrated in Fig. 1. The following
theorem states that the mapping G̃ = g̃τ̃ has this property where g̃t is SLEκ (ρ) and indepen-
dent of gt , and τ̃ is the stopping time defined analogously as in (5).

Theorem 1 Let the pair (gt , τ ) be SLEκ (ρ) and the stopping time of (5), and let (g̃, τ̃ ) be
an independent copy of them. If ρ < (κ −4)/2 then τ < ∞ a.s. and hence gτ is well-defined.
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Fig. 1 The law of G̃ is stationary in the following sense: if the law of the hull in the third picture is taken
according to the law of G̃ and if an independent piece of SLE is added as in the first picture, then the law of
this modified hull is the same as the first one

Furthermore, if φt is as above, then G̃ = g̃τ̃ and

Gt =
{

φt ◦ G̃ ◦ φ−1
t ◦ gt on {τ > t}

gτ on {τ ≤ t} (8)

are identically distributed.

Proof The argument we present here is basically that SLEκ (ρ) satisfies Schramm’s principle
for three marked points. Since we didn’t provide the details above, it is worth writing down.
The theorem and the proof relies on the Markov property and the Brownian scaling of Bessel
processes.

Assume that x < y. The other case can be done symmetrically. Write the Bessel stochas-
tic differential equation in a bit non-standard way as

dZt = √
κdBt + (ρ + 2)

dt

Zt

. (9)

Let Zt and Z̃t be the solutions of (9) for two independent Brownian motions and with the
initial condition Z0 = Z̃0 = y − x. Now the driving process Xt is defined through the equa-
tions

Yt = Y0 +
∫ t

0

2ds

Zs

,

Xt = Yt − Zt .

In the same way using Z̃t instead of Zt define X̃t and Ỹt . The stopping time τ can be written
as

τ = inf{t ≥ 0 : Zs → 0 as s ↗ t}
and τ̃ can be written using Z̃t .

The first claim follows from the fact that Zt is a scaled version of a Bessel process defined
using the standard normalization, with the index

ν = 2
ρ + 2

κ
.

A standard fact is that a Bessel process will hit 0 if and only if ν < 1, see Example 6.5.3
of [2].

The mapping φt ◦ g̃s ◦ φ−1
t satisfies the normalization

φt ◦ g̃s ◦ φ−1
t (z) = z + 2α2

t s

z
+ · · ·
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and the family of mappings ĝs = φt ◦ g̃s/α2
t
◦ φ−1

t satisfies the Loewner equation with the
driving process

X̂s = αtX̃s/α2
t
+ βt = αt

(

Ỹ0 − Z̃s/α2
t
+

∫ s/α2
t

0

2du

Z̃u

)

+ βt

= Yt − αt Z̃s/α2
t
+ αt

∫ s/α2
t

0

2du

Z̃u

.

Since the second and third term satisfy the Brownian scaling we can write

X̂s = Yt − Ẑs +
∫ s

0

2du

Ẑu

where Ẑs is a solution of the Bessel SDE (9) with the initial value Ẑ0 = αt Z̃0 = Yt − Xt .
Hence the process defined as

{
Zs when s ≤ t

Ẑs−t when s > t

is distributed as the process Zs by the Markov property of Bessel processes and ĝs ◦ gt is
distributed as gt+s . Let σ be the stopping time for Ẑs hitting 0 as s ↗ σ . Then σ = τ̃ α2

t .
And hence on {τ > t} the mapping φt ◦ G̃ ◦ φ−1

t ◦ gt has the same law as gτ . On {τ ≤ t} the
statement follows immediately. �

Note that by the strong Markov property t could be replaced by a stopping time in the
previous theorem. In the previous proof, Feller’s test [2] gave the sharp condition for that τ <

∞ a.s. By considering third point Wt = gt (w), w ∈ R, such that x < y < w, and applying the
same test to Ŵ = (Wt − Xt)/(Yt − Xt) (or rather its time change) it is possible to conclude
the condition under which γ (τ) = y a.s., is ρ ≤ (κ − 8)/2.

For small t , the event {τ ≤ t} has exponentially small probability. To see this we need to
consider only the diffusion term (dBt ) of (9) and we need to note that the probability that a
Brownian motion started from y − x comes near 0 in the time interval [0, t] is exponentially
small in 1/t . By this property we need basically just care about the first case of (8). Actually
we will use the stationarity to calculate the distribution of τ . See (29) below.

Write the expansion of gt as

gt (z) = z + a1(t)

z
+ a2(t)

z2
+ · · · . (10)

We call SLE data the collection of random variables

Xt,Yt , a1(t), a2(t), . . . (11)

SLE data carries all the information about gt and the law of gs , s > t . The coefficient a1(t) =
2t and the higher coefficient are definite integrals of polynomials on the lower coefficients
and Xt . So in principle, they could be calculated. On the stopping time τ we have Xt −Yt →
0 as t ↗ τ and then the SLE data simplifies to ak(τ ), k ∈ N. Note that also a1(τ ) = 2τ is
random.

During the rest of this paper we will present some examples how to use the stationarity
to calculate SLE data related quantities, like the moments E[∏aki

(τ )].
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It should be stressed, that the expected value E[∏aki
(τ )] exists only for a certain range of

the parameters κ,ρ. For example, when ρ = κ −6, for any κ < 8, τ < ∞ a.s. and gτ is well-
defined, but E[∏ |aki

(τ )|] < ∞ only for 0 ≤ κ < κ0(k1, . . . , kn) where κ0(k1, . . . , kn) → 0 as
a natural degree of (k1, . . . , kn) grows. This will be commented more in the end of Sect. 3.5.

3.2 Basic Equations for the Coefficients of G̃

In this section we derive the equation describing the flow of (ãk) under the flow (8). Use the
expansion

G̃(z) = z + ã1

z
+ ã2

z2
+ · · ·

to write the expansion of Gt of (8)

Gt(z) = αtG̃

(
gt (z) − βt

αt

)

+ βt

= gt (z) + ã1α
2
t

gt (z) − βt

+ ã2α
3
t

(gt (z) − βt )2
+ · · · . (12)

So to get the Itô differential of the expansion we need to calculate Itô differential of gt (z)

and expressions of type αn+1
t /(gt (z) − βt )

n at time t = 0.
Let’s simplify the setup: let σ ∈ {−1,1} and x = σ and y = −σ . Note we can always

transform the above setup to this simplified setup with scaling and translation. Now

dgt (z) =
t=0

2dt

z − σ
=

{
2

z
+ σ

2

z2
+ 2

z3
+ σ

2

z4
+ · · ·

}

dt (13)

and after a short calculation we find that

d
αn+1

t

(gt (z) − βt )n
=
t=0

{[

(n + 1)
ρ + 2

4
+ n(n + 1)

κ

8

]
1

zn

+ σ

[

n
ρ − 2

4
+ n(n + 1)

κ

4

]
1

zn+1
+

[

−2n + n(n + 1)
κ

8

]
1

zn+2

− σ
2n

zn+3
− 2n

zn+4
− · · ·

}

dt +
{

σ(n + 1)
1

zn
+ n

1

zn+1

}

dBt . (14)

Using the notation Gt(z) = z + a1(t)z
−1 + a2(t)z

−2 + · · · and combining last two Itô differ-
entials with (12) we finally get

dan(t) =
t=0

{
1

8
(n + 1)(κn + 2ρ + 4)ãn + σ

1

4
(n − 1)(κn + ρ − 2)ãn−1

+ 1

8
(n − 2)(κ(n − 1) − 16)ãn−2 −

n−3∑

k=1

2kσn−kãk + 2σn+1

}

dt

+
√

κ

2

{

σ(n + 1)ãn + (n − 1)ãn−1

}

dBt . (15)
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From now on we will consider only t = 0 and therefore we can identify ãn and an. Write in
short

dan =
(

cn,0 +
n∑

k=1

cn,kak

)

dt + (
dn,n−1an−1 + dn,nan

)
dBt . (16)

These expressions are linear in variables (ak) and hierarchical in the sense that the Itô dif-
ferential of an involves only terms ak for k ≤ n. This is really the reason why this method is
useful.

3.3 Stationarity for the Inverse Mapping

Similar argument can be made for the inverse mapping F̃ = G̃−1 : H → H \ K̃ . For the
inverse mapping ft of gt the Loewner equation is

∂tft (z) = −f ′
t (z)

2

z − Xt

. (17)

Let F̃ be a random conformal mapping that is preserved by SLE flow of ft in the follow-
ing sense: the mapping

Ft = ft ◦ φt ◦ F̃ ◦ φ−1
t (18)

has the same law as F̃ .
Now Ft(z) = ft (αt F̃ ((z − βt )/αt ) + βt) and therefore

dFt(z) =
t=0

− 2dt

F̃ (z) − σ
+ d

(

αt F̃

(
z − βt

αt

)

+ βt

)

. (19)

If F̃ (z) = z + b̃1z
−1 + b̃2z

−2 + · · · and Ft(z) = z + b1(t)z
−1 + b2(t)z

−2 + · · · , we get ex-
pression for dbn(t = 0) in terms of b̃m similarly as in the case of G̃. But now the expressions
are not linear in b̃m. For this reason we won’t consider this setup.

3.4 The Reversibility of SLE with Moments

The reversibility of SLE is the following property: let γ be chordal SLE from 0 to ∞. Then
γ and −1/γ appropriately parameterized have the same law. In terms of SLEκ (κ − 6) this
can be stated as SLEκ (κ − 6) from x to y and SLEκ (κ − 6) from y to x appropriately
parameterized have the same law. Especially this means that the hulls of the full traces have
to have the same law.

Consider now x = −1 and y = 1. Start SLEκ (κ − 6) from x and denote by τ− the hitting
time of y and let the conformal map be g−

τ−(z) = z + a−
1 z−1 + a−

2 z−2 + · · · . In the same
way start SLEκ (κ − 6) from y and denote by τ+ the hitting time of x and let the conformal
map be g+

τ+(z) = z + a+
1 z−1 + a+

2 z−2 + · · · . The reversibility can be formulated using the
coefficient a±

n : for any n ∈ N and l1, . . . , ln ∈ N, l1 < l2 < · · · < ln

(a−
l1
, a−

l2
, . . . , a−

ln
)

L= (a+
l1
, a+

l2
, . . . , a+

ln
),

i.e. they have the same law.
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Let m(z) = −z. This map is the mirror map that changes x with y and therefore

m ◦ g−
τ− ◦ m

L= g+
τ+ .

On the other hand for any g(z) = z + a1z
−1 + a2z

−2 + · · · with real am, m ∈ N, we have

m ◦ g ◦ m(z) = m(g(−z)) = m

(

−z − a1

z
+ a2

z2 − a3

z3 + · · ·
)

= z + a1

z
− a2

z2
+ a3

z3
+ · · · .

In words, the even coefficients change sign under the mirror map m. This shows that the
reversibility is equivalent to

(a−
l1
, a−

l2
, . . . , a−

ln
)

L= ((−1)l1+1a−
l1
, (−1)l2+1a−

l2
, . . . , (−1)ln+1a−

ln
) (20)

which a nice way to give a concrete formulation for the reversibility.
Let n ∈ N and (k1, . . . , kn) ∈ {0,1,2, . . .}n. If the reversibility holds then by (20) each a−

j

with even j collects a minus sign to the following moment and hence

E

⎡

⎣
n∏

j=1

(a−
j )kj

⎤

⎦ = (−1)
∑

1≤i≤n/2 k2i E

⎡

⎣
n∏

j=1

(a−
j )kj

⎤

⎦ (21)

which therefore should vanish when
∑

1≤i≤n/2 k2i is odd. In fact, if every moment existed,
one strategy in proving the reversibility, at least in the case κ ∈ (0,4], could be showing
that these odd moments vanish and showing that the moments determine the distribu-
tion.

3.5 General Expression for Moments

To work out equations for expected values of the type in (21) we use the following notation:
fix n ∈ N and (k1, . . . , kn) ∈ {0,1,2, . . .}n and let

Π = Π(k1, k2, . . . , kn) = a
k1
1 a

k2
2 · · · · · akn

n

and for i ∈ {1, . . . , n}
Πi(k1, k2, . . . , kn) = Π(k1, . . . , ki−1, ki + 1, ki+1, . . . , kn),

Πi(k1, k2, . . . , kn) = Π(k1, . . . , ki−1, ki − 1, ki+1, . . . , kn).

Here Π = 0 with negative arguments. Define similarly Π
j1,...,jm
i1,...,il

. Further Π0 = Π . Since we

are looking for the stationary G̃ we require that the expectation of the drift of Π vanishes.
So for a while we will manipulate the expression of dΠ .

Using this notation and the notation of equation (16) we find that

dΠ =
∑

i

kiΠidai + 1

2

∑

i,j

ki(kj − δij )Πi,j daidaj
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= · · · =
{[

1

2

∑

i

kidii

(

2
cii

dii

− dii +
∑

j

kj djj

)]

Π

+
∑

i>1

kidi,i−1

(
ci,i−1

di,i−1
− dii +

∑

j

kj djj

)

Πi−1
i

+ 1

2

∑

i,j>1

ki(kj − δij )di,i−1dj,j−1Π
i−1,j−1
i,j

+
∑

i

ki

i−2∑

l=0

cilΠ
l
i

}

dt + { }
dBt . (22)

Note that the following expressions are independent of the summation index i for any κ

and ρ

2
cii

dii

− dii = 2ρ + 4 − κ

2
√

κ
,

ci,i−1

di,i−1
− dii = ρ − 2 − κ

2
√

κ
.

Next we write that
∑

i kidii = √
κ/2

∑
i ki(i + 1) = √

κN , which defines the degree

N = 1

2

∑

i

ki(i + 1) (23)

of a moment Π . Plugging this and the values of cij and dij we get that

dΠ =
{

1

4
N [(2ρ + 4 − κ) + 2Nκ]Π + σ

1

4
[(ρ − 2 − κ) + 2Nκ]

∑

i

ki(i − 1)Πi−1
i

+ κ

8

∑

i,j

ki(kj − δij )(i − 1)(j − 1)Π
i−1,j−1
i,j

− 2
∑

i

ki

i−2∑

l=1

σ i−l l Πl
i + 2

∑

i

kiσ
i+1Π0

i

}

dt + { }
dBt . (24)

For ρ = κ − 6 the above brackets are 2ρ + 4 − κ + 2Nκ = (2N + 1)κ − 8 and ρ − 2 − κ +
2Nκ = 2Nκ − 8. Let’s use this value of ρ for a while.

Now we analyze the degree N. First of all

N = 1

2

∑

i

k2i−1 · 2i + 1

2

∑

i

k2i · (2i + 1)

=
∑

i

(k2i−1 + k2i )i + 1

2

∑

i

k2i .

So N is either a half-integer or an integer depending whether
∑

i k2i is odd or even. So
for the reversibility we would like to show that E[Π ] = 0 when N is a half-integer. Next
we note that the drift in the equation (24) decomposes into A + σB where A and B don’t
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depend (directly) on σ and all the half-integer moments are put in the other one and the
integer moments on the other.

Under the reversibility E[Π ] = 0 when N is a half-integer, then for N an integer we
would have

E[Π(k1, . . . , kn)] = pk1,...,kn (κ)

(8 − 3κ)(8 − 5κ) · . . . · (8 − (2N + 1)κ)
, (25)

where pk1,...,kn is a polynomial with highest degree Ñ = 1/2
∑

i ki(i − 1). The denominator
follows from the fact that as we recursively solve E[Π ] from (24) by demanding that the drift
vanishes, the factor in front of the moment with the largest degree is 1/4N [(2N + 1)κ − 8].
Similarly κ can enter the numerator only through the term Π

i−1,j−1
i,j (this argument requires

more care though). Ñ is the number of steps from Π(k1, . . . , kn) to Π(k′
1,0,0, . . . ,0) by

lowering two powers with Π
i−1,j−1
i,j .

Equation (25) can be interpreted so that the expected value Π(k1, . . . , kn) exists for small
κ as long as the right-hand side is finite. So we can read from this general form that the
expected value Π(k1, . . . , kn) exists for κ ∈ (

0,8/(2N + 1)
)
. This result is proven in Ap-

pendix A.1 of [3]. The result therein includes both the half-integer and the integer moments.

3.6 Calculating Moments an
1 , an

1 am
2 and so on

In this section, we study only the case ρ = κ − 6. We will show how to actually calculate
moments, i.e. expected values of SLE data. Let’s calculate Itô differential

d(an
1 ) = nan−1

1 da1 + 1

2
n(n − 1)an−2

1 (da1)
2

=
[

nan−1
1

(

2 + 3κ − 8

4
a1

)

+ 1

2
n(n − 1)an−2

1 · κa2
1

]

dt + ( )dBt

= n

[

2an−1
1 + (2n + 1)κ − 8

4
an

1

]

dt + ( )dBt .

Then we demand that expectation of the drift is zero. This gives

E[an
1 ] = 8E[an−1

1 ]
8 − (2n + 1)κ

= · · · = 8n

(8 − 3κ)(8 − 5κ) · · · · · (8 − (2n + 1)κ)

since E[a0
1] = 1. This is true for x = σ and y = −σ . For general x, y ∈ R, use a suitable

Möbius transformation to get

E[an
1 ] = 2n(x − y)2n

(8 − 3κ)(8 − 5κ) · · · · · (8 − (2n + 1)κ)
. (26)

Similar calculation for an
1 am

2 , m even, gives

E[an
1 am

2 ] =
22n+3m

(
κ
6

)m/2 m!
( m

2 )!
(8 − 3κ)(8 − 5κ) · · · · · (8 − (2n + 3m + 1)κ)

. (27)

The higher moments can be in principle calculated using the recursion we get from (24).
The author hasn’t been able to completely solve the recursion.
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3.7 Density Function of a1

As stated earlier a1 is distributed as 2τ where τ is the hitting time of 0 for a Bessel process.
Its distribution can be calculated many ways using the Bessel process directly and some of
the ways resemble quite much what follows. However the following way to calculate the
distribution is worth mentioning.

If the capacity a1(t) has a density function νt then

Et [f (a1)] =
∫ ∞

0
f (x)νt (x)dx

for each sufficiently smooth f : (0,∞) → R with compact support. For such a function the
Itô differential is

df (a1) =
[(

2 + κ + 2ρ + 4

4
a1

)

f ′(a1) + κ

2
a2

1f
′′(a1)

]

dt + σa1
√

κf ′(a1)dBt .

For νt = ν stationary, the expectation of the drift has to vanish

0 = E

[(

2 + κ + 2ρ + 4

4
a1

)

f ′(a1) + κ

2
a2

1f
′′(a1)

]

=
∫ ∞

0
[p(x)f ′′(x) + q(x)f ′(x)]ν(x)dx (28)

where p(x) = (κ/2) x2 and q(x) = 2 + ((κ + 2ρ + 4)/4) x. Since (28) holds for every f

smooth and with compact support, we conclude −(p(x)ν(x))′ + q(x)ν(x) = C = const.
If we assume ν and ν ′ go zero as x → 0, then C = 0.

Now we solve

ν ′(x)

ν(x)
= q(x) − p′(x)

p(x)
= −3κ − 2ρ − 4

2κ

1

x
+ 4

κ

1

x2

giving

ν(x) = Cκ,ρx
− 3κ−2ρ−4

2κ e− 4
κ

1
x . (29)

Coefficient Cκ,ρ is determined from
∫ ∞

0 ν(x)dx = 1, where the integral converges if and
only if the power of x is smaller than −1. For ρ = κ − 6 this means κ < 8. This result can
be explained as follows: for κ < 8 the chordal SLE a.s. avoids given point and hence the
capacity seen from this point is a.s. finite. Formula (29) can be compared to a formula on
p.98 of [11].

The calculation of a1(τ ) is easier than the other cases, since in any approach it requires
keeping track only of Yt − Xt and not Xt and Yt separately. The problem is essentially
one-dimensional.

4 Conclusions

It was shown how to formulate the stationarity of SLEκ (ρ) as stationarity of the law of
a stopped hull under a SLE induced flow. One of the advances of this approach is that it
involves the full SLE trace directly. The full trace is the most interesting object from the
statistical physics point of view.
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When using the approach to calculate the moments E[∏akj
], the problem is that these

expected values only exist for a range of the parameter κ . Hence the approach should be
applied in some different way. For example, some other function of the random variables
a1, a2, . . . could be taken, say, such as E[eiλa1

∏
akj

]. As proposed by Stanislav Smirnov,
one option is to try to find an alternative interpretation beyond the blowup for the analytic
continuations of the moment formulas such as (26) and (27).
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